e

AD-A216 553

.
¥
i

Lk]

M1

. L I I R <t
' S M Fif oo

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1s. REPORT SECURITY_CL:ASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified e
28. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

Approved for puklic release;

. DECLASSIFICATION/DOWNGRADING SCH E . .
® ’ m d distributionunlimited.
4 PERFOAMING ORGANIZATION RE NEMBER P S. MONITORING ORGANIZATION REPORT NUMBE.R(S)

- . S S
FINAL REPORT ECTE AFOSR-TR. 53 -1 868 -
6a NAME OF PERFORMING ORG} o, |ORHU L |7a. NAME OF MONITORING ORGANIZATION
President and Fe v
Harvard College \§ AFOSR o
6c. ADDRESS /City. State and ZIP Code} Q,J 7b. ADDRESS (City, State and ZIP Code)
Holyoke Center AFOSR, Bldg 10
Cambridge MA 02138 Bolling Air Force -Base
Washington DC 20332-6448
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1 applicabdle)
AFOSR i AFOSR-89- 0088 o
N
8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

same as 7b

311. TITLE (Inciuce Security Classiftcation)

. Collaborative Planning La\(ya £ ;}04 Q2

12B"’aﬁr sg?QLf.UT@?gési, Candace Sidner, Cecile Balkanski

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT
- INAL rrom 10/17/88 - 10/16/89 12/19/89 24

16. SUPPLEMENTARY NOTATION

17 COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD cRoupP | SUB. GR.

| i

19. ABSTRACT (Continue on reverse i/ necessary and (dentify -by block numoder)

_ Our milestones for this pilot project were to collect additional interaction records

of planning by two agents, to analyze the actions and action relations in the data,
to refine definitions of action relations to represent adequately the relationships
occuring in the data, and to prepare a report summarizing the major findings from
the analysis and presenting the new action relationships. We analyzed data from
the following three sources: a construction task, a group planning meeting, and a
simulated human-computer problem-solving dialogue. A description of this data,
the results of the analysis, and the proposed new action relations are described in
this report.,A paper describing these results (Balkanski, Grosz, and Sidner, “Action
Relations in Collaborative Activity”) will be submitted to AAAI-90.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED & SAME AS APT. _ OTIC USERS Unclessified/unlimited

22a. NAME OF RESPONSIBLE INDIVICUAL Nl 22b. TELEPHONE NUMBER 22¢. OFFICE SYMBOL
-~ . finclyde Aree Code:

Eh B HBKSNQM L

DD FORM 1473, 83 APR -

F 1 JAN 73 1S OBSOLETE.
i 215 OBSOLETE. .

RS 1) 4Ecum'rv CLASSIFICATION OF TRIS PAGE

COLLABORATIVE PLANNING

Final Report to the Air Force Office of Scientific Research
Contract number: AFOSR-89-0088

October 17, 1988 through October 16, 1989
Barbara J. Grosz, Principal Investigator

Project Participants:
Candace L. Sidner
Cecile Balkanski

Abstract

Our milestones for this pilot project were to collect additional interaction records
of planning by two agents, to analyze the actions and action relations in the data,
to refine definitions of action relations to represent adequately the relationships
occuring in the data, and to prepare a report summarizing the major findings from
the analysis and presenting the new action relationships. We analyzed data from
the following three sources: a construction task, a group planning meeting, and a
simulated human-computer problem-solving dialogue. A description of this data,
the results of the analysis, and the proposed new action relations are described in
this report. A paper describing these results (Balkanski, Grosz, and Sidner, “Action
Relations in Collaborative Activity”) will be submitted to AAAI-90.

{ ACCeNon ot

b e — -

NTIS CHAY

OTIC

.

LSRR

Vi

VHo e e

G

—

v

L

1

P——

]

o e e e e m ems

Action Relations in Collaborative Activity
Cecile T. Balkanski, Candace L. Sidner, Barbara J. Grosz

1 Data Collection

Our initial description of a framework for modelling collaborative activity included
definitions of a small set of action relations [GS89]. These relations provided a
way of constructing more complex actions from simpler ones. For instance, the
complex action of George and Sue lifting their dining room table could be defined in
terms of a simultaneous generation relationship holding between George’s lifting one
end and Sue’s lifting the other. We noticed, however, that to model collaboration
required a more complete specification of a wider range of action relations that might
participate in any collaborative activity. To expand the set of relations to a set that
would span, or more completely span, the space of complex collaborative actions, we
investigated data in three domains: a construction task, a group planning session,
and a simulated human-computer problem-solving dialogue.

The construction task data were taken from a videotape of the construction of
a porch swing glider by two agents; we will refer to this data as the “glidertape
data”. The group planning session data are from an audiotape of three individuals
in a working group meeting who were exchanging information about the month-to-
month maintenance of a communication network; we will refer to this data as the
“meeting data.” These two types of data differ in significant ways: the glidertape
data includes many examples of physical actions, action sequences, and rationales
for performing actions; it also demonstrates the interleaving of planning and act-
ing (including, but not limited to, situations in which actions fail to achieve their
intended effects) that we conjectured was central to collaborative activity. The
meeting audiotape discourse centers on sharing information about past actions,
and to a lesser extent, choosing actions to be performed at a subsequent time. The
meeting data includes extremely useful discourse (communication) data, but much
less data about the interrelationships among physical actions. The human-computer
problem-solving dialogue data is a set of dialogues between two agents collaborating
to manage a network on a daily basis. This data was constructed, but it was based
on discussions with network managers as well as examples in the literature. This
third source of data included two complex action-types not uncovered in the other
two domains: iterations and conditionals.

We have decided to choose network management (at the daily level) as a domain
of application. This domain has several characteristics which we found valuable for
our research. It offers a natural way to investigate collaborations among agents, one

of which could be a computer. It requires action relationships of some complexity,
thereby enabling us to test the action relations we define. The domain also offers a
means of exploring the coordination of graphical and linguistic means of communi-
cating between agents, a set of issues we are investigating under sponsorship of U
S West Advanced Technologies.

In the following sections most of our examples draw on data from the glider-
tape, but we also use the network management dialogues. We also have incorporated
other problematic examples from the commonsense everyday world when they best
illustrate certain problems. The relations we report on here are sufficient for de-
scribing the relations in the glidertape, and they cover nearly all of the relations of
the network management dialogues. We are still investigating the representation of
tests and the actions they comprise. In a related report[GSL89], we present samples
of the recipes (i.e.act-types and relations among them) for actions in the network
management domain.

2 Action Relations

2.1 Introduction

Our aim in this section is to identify and define the relations that hold among
actions performed by more than one agent. In previous work [GS89|, we have
examined generation and enablement relationships between actions performed by a
single agent. For example, flipping the light switch generates turning the light on,
and buying ingredients enables preparing dinner.

When multiple agents and multiple actions are considered, then new action
relations come into play. For example, actions performed by different agents may
be simultaneous or sequential. In our earlier work, we identified the following cases:

GEN-Simult: two agents lifting up a piano

GEN-Conjoined: two agents setting a table

GEN-Sequence: one agent turning a door knob then pulling
on it to open a door

The glider tape provides numerous examples of actions fitting into the categories
given above, as well as examples showing the need to revise them and add new ones.
In this section, we discuss the following categories:

Action relations: generation (GEN), enablement (ENABLE),
facilitation (FACIL), prevention (PREVENT), causality (CAUSE)
Complex action formation: sequence, conjunction, simultaneity, iteration

2.2 GENERATION

If action A generates action B then when some agent G performs action A, action B
occurs at the same time, without agent G having to do anything more than perform
action A [Pol86,Gol70]. For example, with a single agent and action, we have the
example given earlier:

GEN(flip(G, light-switch), turn-on(G, light))

Or, to take an example from the glider tape, the action of one agent hammering
each arm-assembly against the base leg assembly, to bring the two pieces tightly
together, can be represented as follows:

GEN(hit(G, arm-assembly, hammer), secure(G,,arm-assembly,leg-spreader))

This representation, as well as the following ones, will be formalized in the next
chapter. For the time being, it suffices to read GEN(A, B), as A generates B.

With multiple actions and agents, we need to specify how different actions
Ay, Ag, ..., A, performed by different agents, can combine to produce a composite
action B.

2.2.1 GEN-Simultaneous

As the name suggests, simultaneous actions are those which occur over identical
intervals of time. Each individual action will have the proper generation relationship
with the overall action to be achieved if and only if the other actions are performed
at the same time [GS89).

For example, to attach the arm-assemblies to the base of the glider, the agents
perform the simultaneous actions of holding the arm assembly in the vertical posi-
tion and attaching it to two glider straps mounted to the base of the elider. This
can be expressed as follows:

GEN-Simult((hold(John, right-arm-assembly,vertical-position" &
attach(Paul,right-arm-assembly, right-strap)).
attach(John&Paul, right-arm-assembly, glider-base))

The number of actions and the number of agents need not be the same. To
attach the base spreader to the leg-assemblies, for exaraple, one agent performs two
actions simultaneously to achieve the desired result:

GEN-Simult((hold(John, left-hand, left-end-spreader) &
insert(John, right-hand, lag-screw, left-end-spreader)),
attach(John, left-end-spreader, left-leg-assembly))

2.2.2 GEN-Sequence

Actions related by a GEN-Sequence relation are those that, when taken together
and performed in a particular order, achieve a desired result. [GS89).

For instance, the recipe for making an angle-food cake can be described (at a very
high level of description) as “preheat the oven, make the batter, bake the batter”.
The first two actions are related by a GEN-Sequence relation: the preheating action
must be done before the making the batter action (else the batter will fall while
the oven is heating up), but the former does not enable the latter. The enable
relationship (described later in this chapter) that does hold in this recipe is between
the sequence of the two first actions and the third action, baking the cake. We can
express these relationships as follows:

GEN-Sequence((preheat(G, oven) A make(G, batter)), ready-to-bake(batter))
ENABLE(ready-to-bake(batter), bake(G, batter))
GEN(bake(G, batter), make(G, angel-food-cake))

If two or more actions must be done in sequence, then there is a reason for this
ordering. This is why GEN-Sequence and Enable relationships are sometimes hard
to distinguish. In the previous example, the oven needs to be turned on before
making the batter so that it is at the right temperature when the batter is ready.
This is a time constraint, but the two actions are not related by enablement. (One
could put the batter in a cold oven, and bake it, but the result would not be the
expected one.)

However, in the glider tape, there are very few instances of actions related by
GEN-Sequence relationships. This may be a ccnsequence of the type of task being
performed, namely a construction task, where each building step typically enables
the next. Consider for example the following (high level) instructions:

To build the glider:
1. build the base
2. attach the arm assemblies
3. attach the seat frame
4. attach the back rest

Although this set of instructions involves a “sequence” of actions, describing
these actions by a GEN-Sequence relationship would be incorrect: here, each indi-
vidual action involves putting together particular pieces that need to be together
in order for the next action to be performable. We therefore have a set of actions
related by enablement.

Another reason for which actions may have be to sequential is resource allo-
cation. For example, the last step in building the base of the glider consists in
tightening all bolts and screws. So far, the agents have been working simultane-
ously, on of the right side and the other on the left side of the structure being
constructed. But in this step, they work in sequence because they have to share
the (single) nutdriver they have available. Here, Paul’s tightening the screws on the
left side does not enable John to tighten the screws on the right side, therefore, we
have a GEN-Sequence, namely:

GEN-Sequence((tighten(Paul, screws, left-side), tighten(John, screws, right-side)),
tighten(Paul&John, screws, glider-base))

2.2.3 GEN-Conjoined

Conjoined actions are those that, when taken together, but performed in any order,
achieve a desired result. In such cases, the time interval for each individual action
must fall within some time interval during which all actions are performed; these
individual actions may overlap, but there is no need for simultaneity, nor for a
predetermined order of performance of the individual actions [GS89].

For example, at the beginning of the glider tape, after opening the box and
emptying its contents, the agents clear the floor in order to have enough space for
building the glider. This clearing action is achieved by pushing aside the box and
the pillows which came with it. These two actions, when taken together, achieve
the desired result, as described in the following representation:

GEN-Conjoined((push-aside(G1, pillows) & push-aside(G2, box)),
clear(G1&G2, floor))

Another example occurs when the agents are building the base of the glider.
One of the first subtasks consists in placing dowels in the front and rear rails. This
is accomplished by Paul putting them in the right ends, and John in the left ends;
there is no need for them to perform their actions during exactly the same time
intervals:

GEN-Conjoined((place(Paul, dowels, right-end-of-rails) &
place(John, dowels, left-end-of-rails)),
prepare{Paul&John, dowels, rails))

2.2.4 GEN-Iteration

Another type of action relation which was clearly illustrated in the glider tape is
that of iteration. In this case, one or more agents perform the same action over and
over, until, for instance, every object of a given set has been manipulated by that
action. This repetition happens, for instance, when the agents are checking all the
screws. To accomplish this task, they have to take every screw, one at a time, and
match it on the list of parts in the directions sheet. We can express this as follows:

GEN-Iteration((find(screw;) & match(screw;, picture)), check(set-of-screws))

An action to be iterated can itself be a complex action. For example, to tighten
all the bolts, the agents have to perform the tightening action on each bolt. This
action is a complex action which can be described by a GEN-Simult relationship:
to tighten a bolt, John and Paul must, simultaneously and respectively, hold the
nut and turn the bolt. This is expressed as follows:

GEN-Simult((hold(John, nut) & turn(Paul, bolt)), tighten(John&Paul, bolt)),
GEN-Iteration(tighten(John&Paul, bolt,), tighten(John&Paul, set-of-bolts))

Although all examples from the glider tape involve iteration over a set of objects,
this is not the only type of iterative actions. One other type of iteration involves
repeating an action until a given condition is met, as in the following example:

Try the number until you get through!

Here, unlike the other examples, it is not known ahead of time how many times
the action will be iterated. The next chapter will discuss these cases.

2.3 ENABLE

If action A enables action B, then the performance of action A brings about condi-
tions that allow the subsequent performance of B. Unlike generation of B from A, if
A enables B, B is not done as a result of doing action A [Pol86,Gol70]. For example,
with a single agent and action, we have the example given in the introduction:

ENABLE(buy(G1, ingredients), prepare(G2, dinner))

Or to take an example from the glider tape, the agents need to locate the parts
in order to use them; i.e.:

ENABLE(locate(G, part), use(G, part))

6

Mental actions, as well as physical actions, participate in action relationships.
Understanding directions, for instance, is a mental action that enables the agents
to subsequently follow them; i.e.:

ENABLE(understand(G, directions), follow(G, directions))

As with generation, the actions involved in an enable relationship may them-
selves be complex actions. For example, at the beginning of the glider tape, the
agents discover the warranty as they are checking all the parts. John then com-
ments “If there’s any problem, I have the biil”. This situation illustrates John’s
knowledge of disjoined actions in an enable relationship: showing the warranty or
showing the bill enables replacing the faulty-part; i.e.:

GEN-Disjoined((show(G, warranty) or show(G, bill)),
show(G, proof-of-purchase))

ENABLE(show(G, proof-of-purchase), replace(G, faulty-part))

Another example occurs when the agents attach the seat-frame. They first place
the seat-frame in the right position, acting simultaneously, then, acting conjointly,
they each place bolts, washers and nuts in their side of the glider. Since the first
action enables the second, we have:

GEN-Simult((position(John, right-side-seat-frame) A
position(Paul, left-side-sear-frame)),
position(John&Paul, seat-frame))

ENABLE(position(John&Paul, seat-frame),

attach(John, bolts/washers/nuts, right-side-seat-frame))
ENABLE(position(John&Paul, seat-frame),

attach(Pavl, bolts/washers/nuts, left-side-seat-frame))

GEN-Conjoined((attach(John, bolts/washers/nuts, right-side-seat-frame) A
attach(Paul, bolts/washers/nuts, left-side-seat-frame)),
attach(John&Paul, seat-frame, glider))

2.4 FACILITATE

The tapes also provides several situations where one action, A, facilitates, or makes
easier, another, B. In these cases, doing A brings about a condition which makes the
(subsequent) doing of B easier. Contrary to enablement relationships, in facilitate

7

relationships, A does not have to be done first in order for B to be performable; but
if B is done without A having been done before, then some other difficulty may be
encountered. We will denote this relationship FACIL.

For example, at the very beginning of the glider tape, the agents realize that
reading the directions will help them in their subsequent task of building the glider.
Using the new relationship FACIL, we can express this as follows:

FACIL(read(G, directions), buiid(G, glider))
The following utterance provides another example:

You can tell by the fact that it’s a little easter if we turn the whole thing
upside down.

FACIL(turn(G1&G2, base, upside-down), attach(G1&G2, rail, screws))

It is interesting to notice that FACILITATE relations are often explicitly marked
in the utterance, e.g. by “it’s probably good if”, and “it’s a little easier if”. However,
the border between FACIL and ENABLE is not always evident from the agents’
utterances. In the following utterance, when the agents are discussing the best way
to fasten a bolt, an ENABLE, rather than a FACIL, relation seems appropriate,
despite the fact that the agent says “it’s easier to”:

John: I guess it’s easier to hold it and then turn it the other side.
Paul: Yeah, once you it get on, then you can turn it.

ENABLE(hold(G1, nut, left-hand), tighten(G1, screw, right-hand))
GENERATE(tighten(G1, screw), secure(Gl1, rail, leg-assembly))

2.5 PREVENT relation

Another type of action relationship often encounted is that of one action A prevent-
ing another action B. For example, the child’s interruptions bring about a situation
that prevents the men from building the glider:

PREVENT(interrupt(child, agents), build(agents, glider))

The PREVENT relation may be connected to goals of maintenance. For the
construction process to be successful, for example, the agents have to be able to
work in an undisturbed environment. The child’s interruptions, however, prevent
this goal from being maintained, and this in turn prevents the agents from focusing
their attention on the construction process. This can be expressed as follows:

8

PREVENT (interruptions, undisturbed-environment)
ENABLE(undisturbed-environment, build(agents, glider))

A similar example occurs in the following situation, where the agents need to
maintain the wood from being stressed:

John: They say here “do not over tighten bolts, tighten only enough to bring
the heads firmly agatnst the wood” otherwsse it starts to eat in the
wood I assume.

PREVENT (tighten(bolts, too-much),wood(unstressed))

2.6 CAUSE

One last relation to mention is that of causality. For example, the agents’ first
attempt at building the base of the glider fails after the structure collapses as
a result of hitting it with a hammer. The failure then leads them to decide to
coordinate their actions. These action relationships can be described as follows:

CAUSE(hit(G, hammer, leg-assembly), detach(leg-assembly, rail))
CAUSE(detach(leg-assembly,rail), intend(G1&G2, coordinate))

Other instances of causal relations occur when the agents realize that they are
running out of washers:

CAUSE(question(G, put(G, washer, right-arm-assembly)), count(G, washers))
ENABLE(count(G, washers), realize(G, error))
CAUSE(realize(G, error), disassembly (G, glider))

Causality will be further discussed in the last section of this report.

3 Action Relation Definitions

The definitions that follow are presented in the formalization developed during this
contract. That formalization suggested several simplifications which we are now
investigating. The modifications that result will be (?) part of current effort.

3.1 Action representation

Pollack {Pol86] adopts a 3-way terminological distinction: an act-type is a type of
action (e.g. calling the hospital), an action or act is a triple of act-type, agent, and
time (e.g. Joan’s calling the hospital yesterday afternoon), and an occurrence is a
realization of some action (e.g. Joan called the hospital yesterday afternoon). [cf
p.41]

On the other hand, we have suggested a 2-way distinction: occurence versus act-
type. An act-type is a type of action, namely a singleton, pair, triple or quadruple
from the following lattice of specialization, where « is the act-type descriptor, G
the agent performing a, T the interval of time over which a occurs, and O the other
objects which play a role in the act-type:

< a>

d ! N

<a,G><a0><aT>

L/ N 7 N
<a,G,0O><a,GT > < a,0,T >

N\ ! /
< a,G,0,T >
(i) <a> read
< a, G> John’s reading
<a,O,T> read a novel today

< a, G, 0, T> John's reading a novel today

In this representation, an act-type can be simply named, or increasingly specified
by other relevant arguments. Pollack, on the other hand, typically represents objects
by “attaching” them to the act-type, as in (ii), below, although she does mention
an alternative representation, where objects are arguments to the act-type, as in

(iii):
(ii) <talk-to-Jane, Sue, now>
(i) <talk-to(Jane), Sue, now>

The notation in (iii) seems justified given that the notion of agency, unlike
that of object, Geserves a separate treatment and should thercfore be kept separate
from the act-type. Furthermore, when there are several objects, the notation in (i)
becomes clumsy if they are kept separate from the act type; compare for example
<give(painting, friend), Sue, now> with <give, Sue, painting, friend, now>.

Notice that this difference in representation carries over to the OCCURS pred-
icate to which objects must also be added:

10

(i) OCCURS(act-type(object), agent, time)
(iii) OCCURS(act-type, agent, objects, time)

We are currently exploring this issue. In the present report, we use the repre-
sentations (ii) and (iii).

3.2 Generation
3.2.1 GEN
Example 1 Flipping the light switch to turn the light on.

For single actions, we adopt Pollack’s definitions. She distinguishes CGEN from
GEN: CGEN is defined only in terms of act-types, « and 3, and the “generation-
enabling conditions” C, whereas GEN is defined in terms of actions, i.e. the triple
act-type, agent and time, < @, G, t>. Her definitions are as follows [ct p.52]:

CGEN(q, 8, C) < .
(i) [V G1, t1 [[HOLDS(C, t1) A OCCURS(e, G1, t1)]
=> OCCURS(f, G1, t1)] A
(i) 3 G2, t2 [0CCURS(q, G2, t2) A ~OCCURS(B, G2, t2)] A
(ii) 3 G3, t3 [HOLDS(C, t3) A ~OCCURS(S, G3, t3)]]

GEN(e,8, G, t) <> 3 C (CGEN(a, 8, C) A HOLDS(C, t))

The previous example is therefore represented as follows (the condition given is
simply illustrative):

CGEN(flip(G, light-switch), turn-on(G, light), on(electricity))

3.2.2 GEN-Simult
Example 2 Lucie and Chris holding both ends of the pitano to lift it up.

In all following definitions, we make use of the following notation: « is an act-
type, a; runs from ¢ = 1 to ¢+ = n, G is an agent, G; runs from j =1 to j = k,
n > k, G,, is the agent performing act-type a;, tis a time interval, t,, is the interval
of time over which act ‘ype a; occurs, and t, is the interval of time covering all ¢,,
intervals.

11

CGEN-Simult(a;& ... &a,, 8, C) <

n
(i) VGt [[(A OCCURS(a, Ga, tc)) A HOLDS(C, t.)|
i=1
= OCCURS(8, G1& ... &Gy, t.)] A
n
() 3G t.[(A OCCURS(a, Ga,,t.)) A ~OCCURS(B, G,&... &Gy, t.)] A
i=1

(ili) 3 G;,t. [HOLDS(C, t,) A ~OCCURS(8, Gi& ... &Gy, t.)]]

GEN-Simult(a;&... &an, 8, Gi1&... &Gy, t) <
3 C [CGEN-Simult(a1& . .. &an, §, C) A HOLDS(C, t)]

Given this definition, and the one presented later for ENABLE, enablement
relations between the individual actions involved in a GEN-Simult relationships are
excluded. This happens because of time constraints: if «; and a; are in a GEN-
Simult relationship, then they occur at the same time; if, on the other hand, they
are in an ENABLE relationship, then a; occurs before a,; therefore, a; and ay
cannot be both in a GEN-Simult and an ENABLE relationship.

Notice that the number of agents participating in the simultaneous action is left
unspecified. This will be the case of all definitions. Here, for example, there could
be even just one agent: e.g. breaking eggs into a pan with one hand, and turning
the sauce in that pan with the other.

Example 2 can then be represented as:

CGEN-Simult((lift (Lucie, left-end) & lift(Chris, right-end})},
lift(Lucie& Chris, piano), not-too-heavy(piano))
3.2.3 GEN-sequence

Example 3 To make angel-food cake, preheat the oven, make the batter, then bake
it.

CGEN-sequence(a, & ... &ay,, 3, C) <

n
(i) ¥Gjt. [A OCCURS(c4, Ga,, ta,)) A HOLDS(C, t.)]
i=1
= OCCURS(B, G1&... &Gy, t.)] A
n

(i) 3G t.[(A OCCURS(a, Ga, ta,)) A ~OCCURS(B, Gi& ... &Gy, t.)] A

t=1

12

(iii) 3 G,,t. [HOLDS(C, t.) A ~OCCURS(S, G1& ... &Gy, t.)]]

where DURING(t;, t.) and BEFORE(t;, ti41),
and -(3 a;, ax ENABLE(e;, o))

GEN-Sequence(a & ... &ap, 8, G1& ... &Gy, t) <=
3 C [CGEN-Sequence(a & ... &a,, B, C) A HOLDS(C, t)]

Notice that this definition is exactly the same as that of GEN-Conjoined except
for the additional constraint that the time interval t; occur before t;,;, which is not
required for GEN-Conjoined.

3.2.4 GEN-Conjoined

Example 4 Sally and Peter setting the table.

CGEN-Conjoined(oy& ... &an, 8, C) <=
(i) ¥ Gjte [[(K OCCURS(a4, Ga,, to;)) A HOLDS(C, t.)]
:cl)CCURS(ﬁ, Gi& ... &Gy, t.)] A
(i) 3 Gt [(Z OCCURS(e4, Ga;, ta;)) A ~OCCURS(8, G,&... &Gy, t.)] A
(ili) 3 G, t. [H(;LZDIS(C, t.) A ~OCCURS(B, G,& ... &Gy, t.)]]

where DURING(t,, t.) and —(3 aj, ax ENABLE(a;, o))

GEN-Conjoined(a,& ... &ay,, 8, Gi1& ... &Gy, t) <
3 C [CGEN-Conjoined(a;&. .. &a,, 8, C) A HOLDS(C, t)]

Notice that this definition is exactly the same as that of GEN-Simult except for
the fact that the individual actions < ay, Gg;, ta;, > are not necessarily performed
at the same time.

The previous example is then:

CGEN-Conjoined([put(Sally, dishes) A put(Peter, silverware) A put(Sally, glasses)],
set-table(Sally&Peter), [on-table(table-cloth) A ...))

13

3.2.5 GEN-Iteration

a. Iteration over a set of objects

The first type of iteration we will consider involves iterating over a set of objects,
as in the example below. We describe it by the action relationship GEN-Iteration:

Example 5 Tightening a set of bolts by tightening each one of them.

CGEN-Iteration(a, obj;& ... &obj,, 8, C) (version 1) <

n
(i) [YGjte[[(A OCCURS(a(obj), Ga, ta;)) A HOLDS(C, t.)]
i=1
= OCCURS(B, G1&... &Gy, t.)] A
n
(i) 3Gt [(A OCCURS(a(ob), Ga;, ta;) A “OCCURS(B, Gi& ... &Gy, t.)] A
i=1

(iii) 3 G,,t. [HOLDS(C, t.) A ~OCCURS(8, G1&... &Gy, t.)]]
where DURING(t,,, t.) and ~(3 ¢,y ENABLE(q;, o))

GEN-Iteration(a, obj,& ... &obj,, 8, Gi1& ... &G, t) <
3 C CGEN-Iteration(a, obj,& ... &obj,, 8, C) A HOLDS(C, t)}

This definition is very similar to that of GEN-Conjoined. What differs here is
that instead of describing a set of different act-types being performed, this definition
describes the same act-type, a, being performed over a set of objects.

Given this definition, the previous example is then:

CGEN-Iteration(tighten, bolt,& ... &bolt,, secure(structure), available(tools))

b. Iteration over agents and times

Just as iterations occur over objects and act-types, they also occur over agents
and/or times. For example:

Example 6 FEvery member of the team did the ezercise.
Take this medicine every four hours.

These cases can be handled by generalizing GEN-Iteration in the following way:

14

CGEN-Iteration(e, iter,& ... &iter,, 8, C) (version 2) <=
if iter; is an object, let OCCURS(a, Ga,, ta,))] = OCCURS(a (ob_;,) Ga;s ta;))]
if iter; is an agent, let OCCURS(¢, Ga;, to;))] = OCCURS(a, G, tg,))

if iter; is a time, let OCCURS(ay, Ca,, t,))] = OCCURS(q, G, t;))|

n
(i) VGt [[(A OCCURS(4, Gay ta;)) A HOLDS(C, t,)]
i=1
—> OCCURS(8, G1& ... &Gy, t.)] A
n
(i) 3Gjte[(A OCCURS(ay, Gay, ta,) A ~OCCURS(B, Gi&... &Gy, to)] A
i=1

(iii) 3 Gj,t. [HOLDS(C, t.) A ~OCCURS(B, G &. .. &G, t.)]]
where DURING(t,,, t.) and =(3 a;,ay ENABLE(ay, o))

GEN-Iteration(a, iter & ... &iter,, 0, G1& ... &Gy, t) <—
3 C CGEN-Iteration(e, iter & ... &iter,, 8, C) A HOLDS(C, t)]

c. Iteration over multiple sets of objects

The definition given above for GEN-Iteration is in fact a special case of a more
general definition which allows more than one set of objects to be iterated over.
Consider for instance the following example:

Example 7 Alez put a nail in every board.

In this situation, both a set of nails and a set of boards are iterated over.
Given its current definition, GEN-Iteration does not handle this case. We therefore
introduce the term object collection to refer to the sets of objects that are to be
iterated over. These sets typically correspond to different thematic roles of the verb
expressing the given act-type. In the above example, we have an object collection
consisting of all nails (i.e. filling the direct object position) and all boards (i.e.
filling the indirect object position). Interation can also involve objects filling other
thematic roles, such as instrument or destination for example.

The following revised definition will handle these more complex cases of iteration.
It is exactly the same as the previous ones, except that obj;, the ith object being
iterated over, is replaced by obj-coll;, the ith collection of objects being iterated
over. When only one set of objects will be iterated over, as is the case most of the
time, then obj-coll; will consist of a single object o0by;.

CGEN:-Iteration(a, iter,& ... &iter,, 8, C) (version 3) <=

15

if iter; is a collection of objects,

let OCCURS(a, Ga,) ta;))] = OCCURS(
if iter; is an agent, let OCCURS(a,, o bay
if iter, is a time, let OCCURS(q;, Gy, ta,)

a(Obj-COllc')’ Gan ta.‘))]
))] = OCCURS(a, Gi, t:))]
)] = OCCURS(a, G, t.))]

n
() VGite[[(A OCCURS(q;, G, ta;)) A HOLDS(C, t.)]
i=1
=> OCCURS(f, G1&...&Gy, t.)] A
n
(i) 3Gt [(A OCCURS(a4, Ga,, ta,) A “OCCURS(B, G1& ... &Gy, t,)] A
i=1

(iii) 3 Gj,te [HOLDS(C, t.) A ~OCCURS(S, Gi&. .. &Gy, t.)]]
where DURING(t,,, t.) and —(3 a;, x ENABLE(qa;, o))

GEN-Iteration(a, iter,& ... &iter,, 3, Gi1&... &G, t) <=
3 C CGEN-Iteration(e, iter & ... &iter,, 8, C) A HOLDS(C, t)]

where OCCURS(a(obj-coll), Gg;, ts,) = OCCURS(a(obj;,, .., obj,), Ga,, ta;)
with each obj; being an argument of the act-type a,

and DURING(t,,, t.),

and —(3 a5, ax ENABLE(¢;, o))

d. Scope of iteration

The definition we have been refining is still unsatisfactory. Consider for example
the following task:

Example 8 Fill all bozes and bring them to the truck.

There are two ways of performing this task: one gives wider scope to the iteration
over objects and the other to the sequence of actions to be performed; in other words,
we have the two following possibilities:

(i) Fill all boxes, then bring them to the truck.
(ii) Fill and bring down one box after the next.

We would like to express both these possibilities in the formalism developped so
far. Since the two act-types involved are in a GEN-Sequence relationship (although
it is more appropriate to fill the boxes before bringing them to the truck, the former

16

action does not enable the latter action in any way), we can do so with the following
relationships:

(i) CGEN-Iteration(fill(G, box), box,& ... &box,, fill(G, set-of-boxes),
available(set-of-boxes))
CGEN-Iteration(bring-down(G, box), box,& ... &box,,
bring-down (G, set-of-boxes), not-too-heavy (set-of-boxes))
CGEN-Sequence((fill(set-of-boxes) & bring-down(set-of-boxes)),
ready-to-load(truck), available(truck))

(ii) CGEN-Sequence((fill(G, box) & bring-down(G, box)),
prepare-for-loading(G, box), available(box))
CGEN-Iteration(prepare-for-loading(G, box), box,& ... &box,,
ready-to-load(truck), available(truck))

But suppose now that the actions involved are the following:
Example 9 Bring down all bozes and load them into the truck.

This task can again be accomplished in two different ways; but here, the for-
malism does not allow us to express the second possibility, namely when the set of
two actions is iterated over the objects.

The problem is due to the fact that these actions are related by an ENABLE
relationship instead of an GEN-Sequence relationship. As can be seen in the follow-
ing representation, the relations as they are now defined do not provide a “handle”
onto the complex action consisting of one action enabling another. The inability
of the relation to adequately represent this case is a source of future work and we
expect ot explore an alternative formulation for a future report.

(i) CGEN-Iteration(bring-down(G, box), box;& ... &boxy,
bring-down(G, set-of-boxes), ready-to-go(set-of-boxes))
CGEN-Iteration(load-into-truck(G, box), box,& ... &boxu,
load-into-truck(G, set-of-boxes), available(truck))
CGEN-Sequence((bring-down(set-of-boxes) & load-into-truck(set-of-boxes)),
read-to-go(truck), available(truck))

(i) ENABLE(bring-down(G, box), load-into-truck(G, box))
CGEN-Iteration(7?7, box,& ... &box,, ready-to-load(truck), available(truck))

e. Iteration until/while

17

So far, iteration has been restricted to cases of the form “for1=1...n,do X;".
Other cases, however, are of the form “do X while/until Y”, as in the examples
given below:

Example 10
(i) Keep trying the number, until the line is no longer busy.
(1t) While you’re in France, go to good restaurants!

These examples involve actions that are to be repeated until, or while, a given
condition is met. Typically, an “until” construct involves an action to be repeated
while the condition is false and until it is true, whereas a “while” construct involves
an action to be repeated while the given condition is true and until it is false. We
define a new iteration relation, GEN-Iteration-test, to represent this case. It is
defined as follows:

CGEN:-Iteration-test(a, 8, C, test) <=
(i) ¥ G,,T, with T max such that HOLDS(test, T)

n
[[HOLDS(C, T) A (A OCCURS(a, G,, t;))]
1=1
= OCCURS(,B, G &... &Gy, T)] A
n
(ii) 3 G,;,T [(A OCCURS(a, Ga, t.')) A —'OCCURS(ﬂ, Gi& ... &Gy, T)] A
1=1

(iii) 3 G;,T [HOLDS(C, T) A ~OCCURS(8, G1& ... &G, T)]]
(iv) Tpaz = 0 => —(HOLDS((test,T))

where DURING(t;, T) and —~(3 a;, . ENABLE(q;, ax))

GEN-Iteration-test(a & ... &an, f, G1& ... &Gy, t, test) <=
3 C [CGEN-Iteration-test(a & . .. &aq, 8, C, test) A HOLDS(C, t)]

The “test” argument in this definition will be adapted to a true or false propo-
sition depending on whether a “while” or “until” construct is involved. For the
examples given above, the arguments to CGEN-Iteration-test would be as follows:

(i) CGEN-Iteration-test(dial(number), call{Sally), busy(line))
(ii) CGEN-Iteration-test(go-to(restaurants), enjoy(yourself), in(you, France))

There are still cases, however, that do not fit into this definition. These involve
actions to be continued, rather than repeated. For example:

18

Example 11
(i) We ought to think about these instructions until we understand them.
(11) Keep working while the system is up.

These examples do not involve a repetition of actions, but an action which occurs
over the maximal interval of time during which a given condition holds, namely
-understand(we, instructions) for (i) and up(system) for (ii). We call GEN-continue
the relation which describes this type of situation. It is defined as follows:

CGEN-continue(a, g, C, test) <=
(i) [V G,,T, with T max such that HOLDS(test, T)
[[HOLDS(C, T) A OCCURS(a, G, t))]
=> OCCURS(8, G1& ... &G, T)] A
(i) 3 G;, T [OCCURS(e, Ga, T)) A ~OCCURS(B, G & ... &Gy, T)| A
(iii) 3 G,,T [HOLDS(C, T) A ~OCCURS(8, G1& ... &Gy, T)]]
(iv) Traz = 0 = ~(HOLDS(test,T))

where —(3 a;, ax ENABLE(q;, ox))

GEN-continue(a, 8, G & ... &Gy, t, test) <
3 C [CGEN-continue(a, 8, C, test) A HOLDS(C, t)]

3.3 ENABLE

Example 12 Annie recently installed cable TV to be able to see more mouvies.

CENABLE(q, 3, C) <
[V G1,t1,t2, 34 [OCCURS(e, G1, t1) A
GEN(e, (ACHIEVE (HOLDS (C, t1))), G1, t1) A

ENABLE(q, 8, G, t) «= 3 C, CENABLE(q, 3, C)

NB: the time of a’s occurring is not necessarily the time of the CGEN of 4 and 3.

This definition says that the occurence of a brings about condition C and that
this condition C is necessary for achieving 8 (via 4). The example given above can
then be represented as follows:

ENABLE(install(Annie, cable-TV), see(Annie, more movies), available(channells))

19

Unlike generation, there is no need for defining new ENABLE relations for mul-
tiple actions, because multiple actions in an ENABLE relation can be expressed
with the existing GENERATION and ENABLE relations. The two following ex-
amples, and their representation (repeated from the previous chapter), illustrate
this point.

Example 13

(i) You need to show the warranty or the bill in order to replace a faulty part.

(13) John and Paul positioned the seat-frame, then attached it with bolts, washers
and nuts, each working on one side of the glider.

(i) GEN-Disjoined((show(G, warranty) V show(G, bill)),
show(G, proof-of-purchase))

ENABLE(show(G, proof-of-purchase), replace(G, faulty-part))

(ii)) GEN-Simult((position(John, right-side-seat-frame) A
position(Paul, left-side-sear-frame)),
place(Johné&Paul, seat-frame))

GEN-Conjoined((place(John, bolts/washers/nuts, right-side-seat-frame) A
place(Paul, bolts/washers/nuts, left-side-seat-frame)),
attach(Johné&Paul, seat-frame, glider))

ENABLE(place(John&Paul, seat-frame),
attach(John&Paul, seat-frame, glider))

3.4 PREVENT

Example 14 Mark’s playing the piano prevented Charlie from sleeping.

CPREVENT(aq, 8, C) <=
[V GL,t1,t2, 3y [OCCURS(e, G1, t1) A
GEN(a, (ACHIEVE (-HOLDS(C, t1))), G1, t1) A
CGEN (v, 8, C)]

PREVENT(q, 8, G, t) <> 3 C, CPREVENTa, 8, C)

NB: the time of a’s occurring is not necessarily the time of the CGEN of 4 and 3.

20

The PREVENT relationship is very similar to the ENABLE relationship. They
both involve two act-types, a and 3, related by a generation condition C; the differ-
ence is that in the ENABLE case, the occurence of a brings about that condition,
wherease in the PREVENT case, it does not. This explains the similarity in the
definitions, the only difference being in HOLDS(C, t) versus ~-HOLDS(C, t).

3.5 FACILITATE

Example 15 Learning French will make st easter for you to communicate and get
around in Montreal.

CFACIL(e, §, C) <=
[3 C, CENABLE(q, 8, C) V
3 G1,t1, (-OCCURS(e, G1, t1)] A
3 C’, t2, HOLDS(C’, t2) == (CGEN(~, §, C’) A
3 t3, t3#t2, HOLDS(C’, t3) = ~CGEN(~, 4, C)]

FACIL(a, 8, G, t) <= 3 C, CFACIL(q, 8, C)

This definition is a disjunction. The first disjunct says that there is a condition
C such that the occurence of o will bring about that condition, thereby enabling
the occurence of 3. The second disjunct handles the cases when a does not occur.
In these cases, there is some other condition C’ under which ~ will sometimes
conditionally generate 3. The “sometimes” is represented by the last implication:
it states that there is a time interval t3 during which 4 will not conditionally generate
8.

The sometimes is necessary to convey the intuition that doing «a is “easier” than
doing some other action (namely «) that will bring about the C’ condition allowing
the occurence of 3. If this clause were not included, then FACIL(«, 8, G, t) would
be equivalent to

CENABLE(«, 8, C) v CENABLE(~, 8, C)

3.6 Some open questions
3.6.1 HINDER

Distinguishing FACIL from ENABLE opens the way for introducing HINDER as op-
posed to PREVENT. Also, in the same way as PREVENT is related to ~ENABLE,
so is HINDER related to ~FACIL. These four relationships are constrasted in the
following diagram:

21

ENABLE(q,8) <= FACIL(a,)

HOLDS(C,t) A CGEN(~, 3,C) HOLDS(C,t) A helps(C,3)
ft ft
¢ ¢
PREVENT(a,8) <> HINDER(a,p)
~HOLDS(C,t) A CGEN(~, 8,C) ~HOLDS(Ct) A helps(C,3)

where helps is a short hand for the second disjunct in the definition of CFACIL.

The definition of HINDER then follows as a dual of FACIL, in the same way
that ENABLE forms a dual with PREVENT.

3.6.2 CAUSE

Example 16 The glider structure collapsed when Paul hammered the leg-assembly
too strongly.

Causality is intuitively similar to generation because both relations involve two
actions such that the occurence of the first results in the occurence of second. They
are not the same however, because if GEN(e, 8, G, t), then a and 8 occur at the
same time, which is not necessarely the case for causality. In the following example,
the breaking of the window occurs after the throwing the ball:

Example 17 Mary threw the ball up high into the air; as it came back down, it
went right over the balcony railing and through the living room window, which broke
with a loud noise.

Causality is also different from generation in that GEN(e,8, G, t) implies
that the same agent(s) performed a and 3, which is not normally the case for
CAUSE(«,B), as the preceding examples show.

Causality, in fact, often involves agentless actions, such as the collapsing and
breaking actions in the previous examples, or the rising action in “putting yeast in
the dough caused the cake to rise”. The glider structure, the ball and the cake, are
the agents of these actions, but not in the sense used in the rest of this study (e.g.
agents have intentions and beliefs). By dealing with agentless actions, causality
relates events rather than actions.

Finally, one last difference worth mentioning concerns intention. Given the
relation, GEN(a, 8, G, t), we expect the agent G to intend to do 8 by doing «,
which is not the case for actions related by causality.

This relation is therefore quite different from the other ones presented in this
report and requires separate treatment.

22

3.6.3 Negation

Agents may discuss actions or states to be avoided. For example, the dialog during
the glider construction includes the two following (non consecutive) statements:

They say here “do not over tighten bolts, ...”.
We’re not liable to disassemble it at this stage.

Negation, however, is a function rather than a relation between actions since it
takes act-types into act-types, and is therefore not a primary concern here.

3.6.4 States versus actions

It often occurs that states enter into action relationships. The question is whether
this is acceptable or not, and if they are, how to express such relationships. The
example involving the child’s interruption for example made reference to the state
“undistrubed-environment”.

There are two possible answers to this issue. One is to allow states to enter into
action relations just like actions do. The predicate ACHIEVE was used by Pollack
to turn states into actions, e.g. ACHIEVE(undisturbed-environment). The other
answer is to introduce new relationship names when states are involved. For our
work, we have chosen to use the ACHIEVE predicate.

3.6.5 Actions participating in several relationships

Actions need not participate in a single action relationship. Sometimes, an action
can be analyzed from several perspectives, and each one will be represented by a
different action relationship. For example, we can treat the agent’s reference to the
warranty either as part of the ongoing plan of sorting out parts or as an independent
plan of discussing the use of a warranty; i.e.:

GEN-disjoined((show(G, warranty) or show(G, bill)),
show(G, proof-of-purchase))

GEN-Conjoined((check(G, warranty) & check(G, bolts) & check(G, tools))
check(G, parts))
3.6.6 Basic relations and relations of explanation

Generation and enablement can be viewed as “basic” relations in that they describe
facts about the world, namely how actions are related to each other. Other relations,
such as facilitate and prevent for example, seem less “basic” in that they provide

23

advice (facilitate), or explanations (prevent) about action relations rather than
describing them. This difference might have consequences in the way “recipes” are
defined and represented. We leave this topic to future research.

References

[Pol86] Martha E. Pollack. A model of plan inference that distinguishes between the
beliefs of actors and observers. In Proceedings of the 24th Annual Meeting of
the Association for Computational Linguistics, pages 207-214, Association
for Computational Linguistisc, New York, June 1986.

[Gol70] Alvin I. Goldman. A Theory of Human Action. Princeton University Press,
Princeton, NJ, 1970. :

[GS89] Barbara J. Grosz and Candace L. Sidner. Plans for Discourse. To appear in
Intentions in Communication, P. Cohen, J. Morgan and M. Pollack (eds),
M.I.T. Press, 1989

[GSL89] Barbara J. Grosz, Candace L. Sidner, Karen E. Lochbaum, Models of
Plans to Support Communication. Forthcoming, Harvard Technote, 1989.

24

